skip to main content


Search for: All records

Creators/Authors contains: "Yakutovich, Aliaksandr V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on‐surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9‐ethynylphenanthrene (9‐EP) upon annealing to 500 K on the chiral Pd3‐terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9‐EP propellers. The observed behavior strongly contrasts the reaction of 9‐EP on the chiral Pd1‐terminated PdGa{111} surfaces, where 9‐EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.

     
    more » « less
  2. Abstract

    Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on‐surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9‐ethynylphenanthrene (9‐EP) upon annealing to 500 K on the chiral Pd3‐terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9‐EP propellers. The observed behavior strongly contrasts the reaction of 9‐EP on the chiral Pd1‐terminated PdGa{111} surfaces, where 9‐EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.

     
    more » « less